PHYSICAL / INORGANIC CHEMISTRY

DPP No. 39

Total Marks: 41

Max. Time: 43 min.

Topic: p-block elements (Halogens and Noble gas)

Type	of Questions				M.M., Min.
Single choice Objective ('-1' negative marking) Q.1 to Q.2 Multiple choice objective ('-1' negative marking) Q.3 to Q.4 True or False (no negative marking) Q.5 & Q.9 Comprehension ('-1' negative marking) Q.10 to Q.12 Subjective Questions ('-1' negative marking) Q.13 to Q.14 (3 marks, 3 min.) (2 marks, 2 min.) (3 marks, 3 min.) (4 marks, 5 min.)					[6, 6] [8, 8] [10, 10] [9, 9] [8, 10]
1.	(a) Which of the follow (A) Cl ₂ O ₇	ving is a mixed anhydridd (B) Cl ₂ O ₃	e ? (C) CIO ₂	(D) Cl ₂ O ₅	
	ů .	disproportionates to : (B) KCIO, KCIO ₄	(C) Cl ₂ , KClO ₄	(D) KCIO ₄ , K0	CI
2.	(A) HI > HBr > HCl > H (C) HCl < HF < HBr < (b) H_2SO_4 + NaCl (s) (A) H_2SO_4 is a reducin (C) HCl is more volatil	HI → NaHSO₄ + HCl. F ng agent.	(B) HF > HCl > (D) HI > HCl < Hydrochloric acid i	· HBr > HI HF < HBr s liberated because naller molecule than H ₂ S	O_4
3.	lodine (I ₂) is soluble in (A) KI solution (C) Carbon tetrachloric		(B) Water (D) Alcohol	, , , , , , , , , , , , , , , , , , ,	
4.	CIO⁻ formed in the following reaction CI₂ + 2OH⁻ → CIO⁻ + CI⁻ + H₂O In this reaction: (A) CI₂ has undergone disproportionation (B) CI₂ has been reduced to CIO⁻ and CI⁻ (C) equivalent mass of CI₂ is equal to its molar mass (D) equivalent mass of CI₂ is half of its molar mass				
5.	Consider the following statements Statement-1: Hydrofluoric acid can not be kept in glass vessel. Statement-2: Hydrochloric acid can be dried by passing it through concentrated H ₂ SO ₄ . Statement-3: Chlorine monoxide is evolved when KCIO ₃ is treated with conc. H ₂ SO ₄ Statement-4: Chlorine reacts with hot and concentrated NaOH to form NaCl and NaClO ₃ . and arrenge in the order of true/false. (A) FTFT (B) FFFT (C) TTFT (D) FTTF				
6.	Consider the following statements Statment-1: Fluorine oxidises water to oxygen. Statment-2: Bromine reacts with water to form HBr and HOBr. Statment-3: lodide (I-) can be oxidised by oxygen in acidic medium. Statment-4: Thermally stable oxide of fluorine at room temperature is OF ₂ . and arrange in the order of true/false. (A) TTTT (B) FTFT (C) TFTF (D) TTFF				

7. Consider the following statements

Statement-1: HBr is a stronger acid then HI because of hydrogen bonding.

Statement-2: F- ion has higher hydration energy than Cl-.

Statement-3: O₃ is more powerful oxidising agent than F₂ because it contains three 'O'.

Statement-4: fluorine does not form polyhalides.

and arrange in the order of true/false.

(A) TTTF

(B) FTFT

(C) TFTF

(D) FFTT

8. (a) Statement-1 : The red liquid bromine reacts with sodium carbonate solution and forms sodium bromide and sodium bromate.

Statement-2: Sodium bromide reacts with conc. H₂SO₄ to form HBr.

- (A) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.
- (B) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1
- (C) Statement-1 is True, Statement-2 is False
- (D) Statement-1 is False, Statement-2 is True
- **(b) Statement-1**: All halogens except fluorine exhibit +1, +3, +5 and +7 oxidation states in addition to -1 oxidation state.

Statement-2: Except fluorine all other halogens have d-orbitals and, therefore, can expand their octets.

- (A) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.
- (B) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1
- (C) Statement-1 is True, Statement-2 is False
- (D) Statement-1 is False, Statement-2 is True
- (c) Statement-1: Most of the reactions of fluorine, are exothermic.

Statement-2: It forms small and strong bond with other elements.

- (A) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.
- (B) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1
- (C) Statement-1 is True, Statement-2 is False
- (D) Statement-1 is False, Statement-2 is True
- 9. (a) Statement-1: CIO₂ is anhydride of chloric acid.

Statement-2: $2CIO_2 + H_2O \longrightarrow HCIO_2 + HCIO_3$.

- (A) If both statement-1 and statement-2 are true and statement-2 is a correct explanation of statement-1.
- (B) If both statement-1 and statement-2 are true and statement-3 is not a correct explanation of statement-1.
- (C) If statement-1 is true but statement-2 is false.
- (D) If statement-1 is false but statement-2 is true.
- **(b) Statement-1**: Bond energy of F₂ is greater than Cl₂.

Statement-2: F-atom is smaller in size than Cl-atom.

- (A) If both statement-1 and statement-2 are true and statement-2 is a correct explanation of statement-1.
- (B) If both statement-1 and statement-2 are true and statement-3 is not a correct explanation of statement-1.
- (C) If statement-1 is true but statement-2 is false.
- (D) If statement-1 is false but statement-2 is true.
- (c) Statement-1: Chlorine and sulphur dioxide both are bleaching agents.

Statement-2: The bleaching action of chlorine is performed through the process of oxidation.

- (A) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.
- (B) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1
- (C) Statement-1 is True, Statement-2 is False
- (D) Statement-1 is False, Statement-2 is True
- (d) Statement-1: lodine stains are removed with the help of sodium thiosulphate solution.

Statement-2: Sodium thiosulphate solution reacts with iodine to form colourless sodium iodide and sodium tetrathionate ($Na_2S_4O_6$).

- (A) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.
- (B) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1
- (C) Statement-1 is True, Statement-2 is False
- (D) Statement-1 is False, Statement-2 is True

Comprehension # (Q.10 to Q.12)

When sodium chloride is treated with concentrated sulphuric acid, a colourless gas, X, which fumes in moist air, is formed. When sodium iodide is treated in the same way a coloured vapour, Y, is produced.

If 90% phosphoric (v) acid is used instead of sulphuric acid a colourless gas is produced in each reaction.

A number of oxoanions of chlorine are known; examples include CIO^- , CIO_3^- and CIO_4^- , CIO^- is formed when chlorine reacts with aqueous alkali.

- **10.** Gases X and Y are respectively:
 - (A) Cl₂, I₂
- (B) HCI, I_2
- (C) HCI, HI
- (D) HCIO, I,
- 11. With 90% phosphoric acid (H₂PO₄), colourless gases formed are :
 - (A) HCI, HI
- (B) Cl₂, I₂
- (C) HCI, I₂
- (D) Cl₂, HI
- **12.** Behaviour of H₂SO₄ and H₃PO₄ is different towards NaI because :
 - (A) H₂SO₄ is stronger acid than H₂PO₄
 - (B) H₂SO₄ is a strong oxidising agent and oxidises colourless gas to coloured vapour Y
 - (C) H₃PO₄ is tribasic acid
 - (D) H₂SO₄ is a dibasic acid
- **13.** Give an example of oxidation of one halide by another halogen. Explain the feasibility of reaction.
- 14. Integer Answer Type

This section contains 2 questions. The answer to each of the questions is a single digit integer, ranging from 0 to 9.

- (i) How many Si-O-Si bridge are presnt in wollastonite molecule?
- (ii) In Cl₂O₂, the Cl—O bonds showing double bond character are.

Answer Key

DPP No. #39

- 1. (a) (C) (b) (D) 2.
- (a) (B) (b) (C) (c) (C)
- 3. (A,C,D)
- **4.** (A,C)

- **5**. (C)
- **6**. (A)
- 7.
- 8.
- (a) (C) (b) (A) (c) (A)

- 9. (a) (D) (b) (D) (c) (B) (d) (A)
- 10. (B)
- **11.** (A)
- **12**. (B)

13. $2KI(aq.) + Cl_2 \longrightarrow 2KCl(aq.) + I_2$

In the reaction Cl_2 oxidises iodide ion (-1 oxidation state) to I_2 (0 oxidation state). Cl_2 has higher reduction potential then I_2 and thus oxidises iodide to iodine getting itself reduced to chloride ion. Similarly, $2KI + X_2 \longrightarrow 2KX + I_2$; (X = Cl, Br, F)

(B)

14. (i) 3 (ii) 6

Hints & Solutions

PHYSICAL / INORGANIC CHEMISTRY

DPP No. #39

- 1. (a) $Cl_2O_7 + H_2O \longrightarrow 2HCIO_4$; $Cl_2O_3 + H_2O \longrightarrow 2HCIO_2$ $2CIO_2 + H_2O \longrightarrow HCIO_2 + HCIO_3$ $Cl_2O_5 + 2H_2O \longrightarrow 2HCIO_3$
- (b) In H₂SO₄, intense H-bonding makes it less volatile than HCl. HCl is more volatile as there is no H-bonding. So H₂SO₄ displaces HCl from its salt.
 (c) I₂ + HNO₃ → 2HIO₃ + 4H₂O + 10 NO₂
- 3. (A) $KI + I_2 \longrightarrow KI_3$ I_2 is non-polar covalent compound. So soluble in (C) & (D)
- Statement-1: SiO₂ + HF SiF₄ + 2H₂O; SiF₄ + 2HF H₂SiF₄ Statement-2: True.
 Statement-3: 3KClO₃ + 3H₂SO₄ 3KHSO₄ + HClO₄ + 2ClO₂ + H₂O
 Statement-4: 6 NaOH + 3Cl₂ 5NaCl + NaClO₃ + 3H₂O
- 6. Statement-3 : $4I^- + 4H^+ + O_2 \longrightarrow 2I_2 + 2H_2O$
- 7. Statement-1: HI > HBr due to low bond dissociation enthalpy. Statement-2: Due to small size Statement-3: F₂ > O₃ oxidising agent. Highest SRP of fluorine Statement-4: Fluorine does not have empty d-orbital.
- 8. (a) $3Br_2 + 3Na_2CO_3 \longrightarrow 5 NaBr + NaBrO_3 + 3CO_2$ $NaBr + H_2SO_4 \longrightarrow Na_2SO_4 + SO_2 + Br_2 + H_2O$
- (b) Bond energy of F₂ is less than Cl₂ because lp–lp repultion.
 - (c) $H_2O + CI_2 \longrightarrow 2HCI + [O]$ $SO_2 + 2H_2O \longrightarrow H_2SO_4 + 2 [H]$
 - (d) $I_2 + 2Na_2S_2O_3 \longrightarrow 2NaI + (colourless) + Na_2S_4O_6$

